ON THE BEHAVIOR OF THE SOLUTIONS FOR CERTAIN
FIRST ORDER LINEAR AUTONOMOUS FUNCTIONAL
DIFFERENTIAL EQUATIONS
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ABSTRACT. Some results are given concerning the behavior of the solutions for
scalar first order linear autonomous delay as well as neutral delay differential
equations. These results are obtained by the use of two distinct real roots of
the corresponding characteristic equation.

1. INTRODUCTION

This paper deals with the behavior of the solutions of scalar first order linear au-
tonomous delay differential equations as well as neutral delay differential equations.
Our results are obtained via two distinct real roots of the corresponding character-
istic equations and are motivated by a result due to Driver [3] (see Theorem 2). The
case of delay differential equations is treated in Section 2, while Section 3 is devoted
to the case of neutral delay differential equations. Our results for delay differential
equations can be derived as a special case from the results for the more general case
of neutral delay differential equations, under some additional restrictions. This is
the reason for which the case of delay differential equations is considered separately.

Some closely related asymptotic results for delay differential equations or neutral
delay differential equations have been given by Driver [3], Driver, Sasser and Slater
[6], Graef and Qian [8], Kordonis, Niyianni and Philos [12], Philos [13], and Philos
and Purnaras [14, 15] (see, also, Arino and Pituk (1], Driver [4], and Gyéri [9]
for certain related results). We must also refer here to the very recent interesting
article by Frasson and Verduyn Lunel [7] concerning the large time behavior of
linear functional differential equations.

It is an interesting problem to extend the results of this paper for the more
general case of periodic delay differential equations (such as in [13]) as well as of
periodic neutral delay differential equations (cf. [14]).

It will be the subject of a future work to present an analogous treatment for
scalar first order linear autonomous delay or neutral delay differential equations
with distributed type delays.

For the general theory of delay differential equations as well as of neutral delay
differential equations, the reader is referred to the books by Diekmann et al. [2],
Driver [5], Hale [10], and Hale and Verduyn Lunel [11].
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2 CH. G. PHILOS AND I. K. PURNARAS

2. DELAY DIFFERENTIAL EQUATIONS

Consider the delay differential equation
(E) ='(t) = az(t) + ) _ bjz(t — 7)),

jeJ
where J is an initial segment of natural numbers, a and b; # 0 for j € J are real
constants, and T; for j € J are positive real numbers such that T;, # T;, for j1,
J2 € J with ji # ja.

Define
T = IaxXT;.
jed

(7 is a positive real number.)

By a solution of the delay differential equation (E), we mean a continuous real-
valued function z defined on the interval [—7, c0), which is continuously differen-
tiable on [0, c0) and satisfies (E) for all £ > 0.

Let C([-7,0],R) be the space of all continuous real-valued functions on the
interval [~7,0]. It is well-known (see, for example, Diekmann et al. [2], Driver
[5], Hale [10], or Hale and Verduyn Lunel [11]) that, for any given énitial function
¢ € C([-,0].R), there exists a unique solution z of the differential equation (E)
which satisfies the initial condition

(©) z(t) = ¢(t) fort e [—7,0];

this solution z will be called the solution of the initial problem (E)-(C) or, more
briefly, the solution of (E)-(C).
The characteristic equation of (E) is

() A=at+ Y be.
jeJ

Theorem 2.0 below is a special case of some more general results obtained by
Philos [13] for periodic delay differential equations, by Kordonis, Niyianni and Phi-
los [12] for autonomous neutral delay differential equations, and by Philos and
Purnaras [14] for periodic neutral delay differential equations. This theorem con-
stitutes a fundamental asymptotic criterion for the solutions of the delay differential
equation (E).

Theorem 2.0. Let Ag be a real Toot of the characteristic equation (x) with the
property

Z Ib_-,l Tje_xo‘rj < 1.
jedJ
(Note that this property guarantees that 1+ > ies biTie 2075 > (.)
Then, for any ¢ € C([—7,0],R), the solution = of (E)-(C) satisfies
] - LA0(¢)

lm [e~?ot —
[e™"(2) T+ X jerbyrsePomi

t—oo
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where

0
Lo (¢) = ¢(0) + Z bje_kofj [ e_)‘”q‘)(s)ds.

jet .
Our main purpose in this section is to establish the following theorem.

Theorem 2.1. Suppose that
bj <0 forjedJ

and let Ay and A1, Ao # A1, be two real roots of the characteristic equation (x).
Then, for any ¢ € C([—7,0],R), the solution = of (E)-(C) satisfies

Lz\u(q{))
1+3 ier b;Tje~ 205

Mi(Xo, M3 8) < et [x(t) - e*“‘] < Ma(Xo, Mi; @)

forallt > 0,
where Ly, (@) is defined as in Theorem 2.0 and:

Mi(Xo,A1;6) = min {e_’\lt [cb(t) — L2 (@) e"“t} }

te[—r,0] 1+ 3 crbymie207s
and
- Ly, (9)
Ma(hos A1; 6) = Mt () - ; siRe
2(d0di3g) = max {e [45(15) 145, brie o

Note: By Lemma 2.1 below, we always have

14+ 3 byryems £ 0.

jeJ

We immediately observe that the double inequality in the conclusion of Theorem
2.1 can equivalently be written as follows

LA0(¢)
1+ ZjGJ bjr:,-e"‘ﬂ"':‘ -

< Ms(Ag, }q;gb)e(’\i_’\")t forallt >0

Mi(Xo. Ap;@)ePim20)t < g=dotg(g)

and consequently
e L (9)
!lim [e A“*z(t)] = 1 Ob_ —BiE
= + 2 ey biT e 0T

provided that A; < Ag.
Moreover, we see that an equivalent form of the double inequality in the conclu-
sion of Theorem 2.1 is the following one

L (¢) A
Ml N Nt At 0 ot < 2
1( 0, 11, t;b)e + 1+EJ€J bjTje—l\oTje e a:(t) g
L)m(qs) Aot

for all £ > 0.

< Ma(Ao, Ax; B)eMt + e

1+ ZjEJ bj‘i’je_'\"T-‘i
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Before we proceed to prove Theorem 2.1, we will give a lemma about the real
roots of the characteristic equation (*).

Lemma 2.1. Suppose that
b; <0 for je.J.
(I) Let Ao be a real Toot of the characteristic equation (). Then
1+ ij‘rje")“"’j >0
ieJ ;
if (%) has at least one real root less than Ap, and
1+ ij?‘je_'\ofj <0
jeJ
if () has at least one real root greater than Ag.

(II) In the interval [a,c0), the characteristic equation (*) has no roots.
(IIT) Assume that

(H) T3 (=bj)e~ (e~ < 1.

ied
Then: (i) A = a— 1 is not a root of the characteristic equation (*). (i) In the
interval (a — 1,a), (*) has a unique root. (iii) In the interval (—co,a— 1), () has
a unigue Toot.

Proof. We first observe that, if x is a real root of the characteristic equation (*),
then

n—a= ije_"""’ <0
jed
and so g < a. This shows Part (II).
In order to prove Parts (I) and (III), we set
FQ)=X-a-) b forAeR.
jedJ
We have
FA) =1+ ij'rje_)”i for A€ R.
jeJ
Furthermore, we obtain
F'(A) =) (=bj)r2e™> forAeR
j€d
and consequently
(2.1) F"(A)>0 forall A e R.

Now, we will show Part (I). To this end, let us consider a real root Ay of the
characteristic equation (*). We see that

1+ brje™% = F'(Xo).
jeJ
Assume that () has at least one real root A; with A; < Ag (respectively, A; > Xg).
Since F'(Ag) = F(A1) = 0, from Rolle’s Theorem it follows that there exists a point
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£ with A; < £ < Ap (resp., Ao < £ < A1) such that F’(€) = 0. On the other hand,
(2.1) implies that F' is strictly increasing on R and hence, as F'(£) = 0, it follows
that F’ is positive on (£, o) (resp., F’ is negative on (—oo,&)). Thus, we always
have F’(Ag) > 0 (resp., F'(X) < 0).

Next, we shall prove Part (III). For this purpose, let us assume that (H) holds.
Assumption (H) means that

(2.2) F (a = %) <0.

This, in particular, implies that A = a— 2 is not a root of the characteristic equation
(¥). We immediately observe that

(2.3) F(a) > 0.
Furthermore, it is not difficult to verify that
(2.4) F{—o0) = 0.

From (2.1), (2.2) and (2.3) it follows that, in the interval (e — ,a), (*) has a unique
root. Moreover, (2.1), (2.2) and (2.4) guarantee that, in the interval (—oc,a — 2),
(*) has also a unique root.

The proof of the lemma is complete.

Proof of Theorem 2.1. Let ¢ be an arbitrary initial function in C([-7,0],R) and
consider the solution z of (E)-(C). Set
y(t) = e~ *0'z(t) for t > —7.
Furthermore, let us define

LAo (¢)

fort > —71.
1+ Zje.f bj‘rje“\ﬂfi -

z(t) = y(t) -

Following the procedure applied by Philos [13] for periodic delay differential equa-
tions, by Kordonis, Niyianni and Philos [12] for autonomous neutral delay differ-
ential equations as well as by Philos and Purnaras [14] for the more general case
of periodic neutral delay differential equations, we can verify that the fact that =
satisfies (E) for £ > 0 is equivalent to the fact that z satisfies

13

(2.5) z(t)=— ije_)“’ff / z(s)ds fort>0.

ied t—7;
Next, consider the function w defined by
w(t) = eFo= 21y for ¢ > —7.
Then it is easy to see that (2.5) can equivalently be written in the form
(2.6) w(t) = - bje T f t eGo=21)(t=5)yy(5)ds  for ¢ > 0.
j€J t=T;
From the definitions of y, z and w it follows immediately that

L)\o (¢)
143 e b0

e)‘“{l fort> —7. |

w(t) = e~ Mt [m(t) —
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Hence, by taking into account the initial condition (C) as well as the way of defini-
tion of M;(Ag, A1; @) and Ma(Ag, A1; @), we can conclude that all we have to prove
is that w satisfies

min w(s) < w(t) < max w(s) forall ¢t >0.
s€f—7,0] s€[—1,0]

‘We restrict ourselves to show that

(2.7) w(t) > r{u.inmw(s) for all ¢ > 0.
sg|—T,

By an analogous procedure, one can establish that

w(t) < max w(s) for every ¢ > 0.
s€f—1,0]

It remains to prove (2.7). To this end, let us consider an arbitrary real number
M with M < minO]w(s). Then
—r

se
(2.8) w(t) > M forte [—7,0].
We claim that
(2.9) w(t) > M forallt>0.

Otherwise, in view of (2.8), there exists a point fg > 0 so that
w(t) > M fort € [-7,tp), and w(ty) = M.

Then, by using the assumption that b; <0 for j € J, from (2.6) we obtain
to
M = w(p)=- ije”‘\m"'/ e(Po—ra)(to—s)y,(g)ds
jeT to—7;
to

> oMY e / ePa=2)(to=) g

jed ta—T7;

M
- 3 byeors [1 - e(Ao—Alm—]
20— A Jj€J

M Z
= b (e—)\o‘r,’ - e—z\lTj)
Ao~ A ’

M
= Z bje—)\o‘rj = Z bje_)‘l‘rj
R b jeJ
M
= AO_AI [(AO—G)_(’XI_G)]

= M.

We have thus arrived at a contradiction. This contradiction establishes our claim,
i.e. (2.9) holds true. Finally, since (2.9) is satisfied for all real numbers M with

M < I[ninﬂlw(s), it follows that (2.7) is always fulfilled. So, the proof of our
sg(—T7,

theorem is complete.
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3. NEUTRAL DELAY DIFFERENTIAL EQUATIONS

Let us consider the neutral delay differential equation

'
(E) 2(t)+ ) cxlt—o:)| =az(t)+ Y bzt —175),
i€l jeJ
where I and J are initial segments of natural numbers, ¢; for i € I, a and b; # 0
for j € J are real constants, and o; for i € I and 7; for j € J are positive real
numbers such that o;, # oy, for iy, i € I with iy # iz and 74, # 74, for ji1,
J2 € J with j1 # ja.
Define

¢ =maxo;, T =maxr;, and 7= max{o,T}.
iel ied

(Clearly, o, T and r are positive real numbers.)

As usual, a continuous real-valued function z defined on the interval [—r,c0)
will be called a solution of the neutral delay differential equation (E) if the function
z(t) + Y _;c; ciz(t — 0:) is continuously differentiable for ¢ > 0 and z satisfies (E)
forall £ > 0.

In the sequel, by C([—r, 0], R) we will denote the set of all continuous real-valued
functions on the interval [—r,0]. It is well-known (see, for example, Diekmann et
al. [2], Hale [10], or Hale and Verduyn Lunel [11]) that, for any initial function ¢ in
C([-r,0],R), the differential equation (E) has a unique solution z which satisfies
the initial condition

© z(t) = ¢(t) for t € [-r,0];

we shall call this function z the solution of the initial problem (E)-(C) or, more
briefly, the solution of (E)—(@)

With the neutral delay differential equation (E) we associate its characteristic
equation

©) A (1 +> c,-e"\"") =a+y bje s

iel jeJ

We will now present a known asymptotic result for the solutions of (E), i.e.
Theorem 3.0 below. This theorem has been established by Kordonis, Niyianni and
Philos [12]. Note that Theorem 3.0 can also be obtained as a special case from a
more general asymptotic criterion (for periodic neutral delay differential equations)
due to Philos and Purnaras [14].

Theorem 3.0. Let Ay be a real oot of the characteristic equation (%) with the
property

D lal (L4 ol os) ™07 + 3 by Ty < 1
e jed
and set

Ty B ZQ (1= Agoy) 0% + Z byTje 2075

iel jeJ
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(Note that the property of Ao guaraniees that 1+ 7y,, > 0.)
Then, for any ¢ € C([—r,0], R), the solution z of (E)-(C) satisfies

lim [e""\”t:r:(t)] — ——-——i’\“ ()

t—oc 1+7)\n 2
where
% 0
Bn(@) = 60)+3 e [#(-09 —doeo% [ (o +
iel —as
0
+ije_"°7ff e~*0%p(s)ds.
jeJ —7;

The main result in this section is the following theorem.

Theorem 3.1. Suppose that
¢ <0 foriclI, and b; <0 for jeJ.
Let Ao be a nonpositive real root of the characteristic equation (¥) with
I+75, #0,
where v,  is defined as in Theorem 3.0. Let also A; be a real root of (¥) with

A1 # Ag. ~
Then, for any ¢ € C([-r,0],R), the solution z of (E)-(C) satisfies

Mi(Do, Ar; 9) < e~ [z(t) - %ﬂe%*} < My(Mo,Ai;8) forall >0,

1 ’YAO
where Ly,(¢) is defined as in Theorem 3.0 and:
— . Ly, (9)
M R - At £ 0 Aot
1(X0, A159) o {e [qb( b=g3 o

and

= - Ly(9)
Ma(Mo,A1;6) = max < e M1t |g(t) — 202l grot [ L
2(Xo, A3 9) tE[—nﬂl{ [¢() 1+’Y,\oe
Note: By Lemma 3.1 below, we always have 1+, # 0if \; is also nonpositive.

We see that the double inequality in the conclusion of the above theorem is
equivalent to

M3 (0, A g)ea 7% < o™ at(t) %@ < M0, haj )er "

Ao
forallt >0
and so

EAo(qS) .

= —Aot —
zliglc [e x(t)] 2 e ’
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provided that A; < Ag. Moreover, we immediately observe that this double inequal-
ity can equivalently be written in the form

= L i I
M (Ao, Ar; )e™t + Me'\"t < z(t) £ Ma(Xo, Ar; p)eMt + ‘I‘l"\"(_@'ﬁ'\"t
14+, Likpy
forallt >0

Proof of Theorem 3.1. Let ¢ € C(|-r,0],R) and z be the solution of (E)-(C).
Furthermore, let ¥ and z be defined by

y(t) = e *z(t) fort > —r, and z(t) = y(t) — L(9) fort > —r.
L

As it has been shown by Kordonis, Niyianni and Philos [12] (see, also, Philos and
Purnaras [14] for the more general case of periodic delay differential equations), the
fact that z satisfies (E) for ¢ > 0 is equivalent to

(3.1) Z(t) + Ecie_)\oaiz(t _ U‘i) = Ao Z CL;,C-'\DU‘- f

i
z(s)ds —
iel iel t=ai

t
- Z bje0Ts f z(s)ds fort>0.
t=—7;

jeJ
Next, let us define
w(t) = ePo=2ty() fort > —r.
By the use of the function w, (3.1) becomes

t
(32) w(t)+ ZC,'e_’\lmw(t —0:)=Xo Zcie—koaif e()-o—)\1)(t"’5)w(s)ds =

iel icl t—ai

¢
— ije"“’ff/ eQPo—2)(t=s)yy(5)ds  for t > 0.

JEJ t—‘fj

Because of the way of definition of y, z and w, we have

w(t) = et [m(t) - —f_’:_"fi) etot J fort > —r.

Thus, from the initial condition (@) and the definitions of the constants M, 1(X0, A130)
and Mz(Ag, A1; ¢) it follows that the double inequality in the conclusion of our the-
orem can equivalently be written as follows

min w(s) < w(t) < max w(s) forallz>0.
s€[—7,0] s€[—7,0]

The proof of the theorem will be accomplished by proving this double inequality.
We will confine our attention to establish that

(3.3) w(t) > 1:[[11110]11)(3) for every t > 0.
sg|—r,
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By a similar way, it can be showed that

w(t) < gaxmw(s) for every t > 0.

To prove (3.3), we consider an arbitrary real number M such that M < r[nino}w(s).
sg|—r,

Clearly,

(3.4) w(t) > M for ¢ € [~r,0].
‘We will show that

(3.5) w(t) > M forall t > 0.

To this end, let us assume that (3.5) fails to hold. Then, because of (3.4), there
exists a point £ > 0 so that

w(t) > M fort € [-rt), and w(tp) = M.

Thus, by using the hypothesis that ¢; <0 fori € I and b; < 0 for j € J and taking
into account the fact that Ag < 0, from (3.2) we derive

M = ‘w(to) =
to
o Z c:_e—)uo‘iw(to _ O'i) + AO qu—)\oai/ e()\u*hl)(tu-s)w(s)ds —
icl iel to—0o;
to
- ije_’\“jf gPo—A)(te—=s)y(5)ds
jeJ to—T;
T
> M ["Zcie"‘l"* + Ao qu"“’”*/o ePo=2)(to=s) g
i€l iel tg—o;
to
_ ije—.\or,-/ o(Ro—21)(to—5) g
jeJ to—T;
= M {—Zcfe"‘l‘" +0 Y e (— ! ) {1 - e("f’"‘ﬂ"f] -
iel iel Ao — A1
1
—) b (— ) [1 - e("""‘l)fi}
Pzt Ao — A1

- X - [—(Ao —X) Y e XY o (e — e M) 4+

el iel

£ by (707 — )

JjEJ

= Aoﬂ_d-/\l A1 Z Cie_z\l":i - X Zcie—)\oai 4 Z bje—)\o'rj _ ije”‘?“'i)

iel el jeJ JEJ
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o M —Ao0; —AoT;
T XX (_’\OZ"‘*“" "7+ bje °T’)*

i€l j€d
=MD e+ e
icl jeJ
M
- AD_AI [(Ao—a)—(A]_"a)]
= M.

This is a contradiction and hence (3.5) is always satisfied. We have thus proved
that (3.5) holds true for all real numbers M with M < mjnOJw(s). This guarantees
-

€l—r,

that (3.3) is fulfilled and so the proof of our theorem is complete.

Now, we will give a lemma which is concerned with the real roots of the charac-
teristic equation (¥).
Lemma 3.1. Suppose that
;<0 foriclI, and b; <0 forjeJ.
(1) Let Ao be a nonpositive real Toot of the characteristic equation (%) and let 7,
be defined as in Theorem 3.0. Then
L. >0
if (¥) has at least one real Toot less than Mg, and
1 #7,, <

if (¥) has at least one nonpositive real Toot greater than X.
(II) If a =0, then A = 0 is not a root of the characteristic equation (¥).
(III) Assume that a =0 and that

(Hy) > (-e) <1
i€l
Then the characteristic equation (¥) has no positive real roots.
(IV) Assume that

(Ha) > (-b)>a
JjeJ
and
(Hs) S(—e)+ Y (=bj)Ti <1
el jed

Then the characteristic equation (¥) has no positive real Toots.
(V) Assume that (Hs) holds, and that

(Hy) et
and
(Hs) (1—ar) Y (~e)e (=)o 42 S (py)e (P < 1.

iel JjEJ
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Then: (i) A = a— 1 is not a root of the characteristic equation (*). (1) In the
interval (a — 1,0], (%) has a unique root. (iii) In the interval (—o0,a— 1), (%) has
a unique mot

Proof. We first consider the particular case where a = 0. In this case, the
characteristic equation (¥) becomes

(o A (1 o Zcie_'\"") Zb e—*f:

iel jeJ

It follows immediately that A = 0 is not a real root of (¥)p, which establishes Part
(IT). Furthermore, let us assume that (Hj;) is satisfied and suppose, for the sake of
contradiction, that (¥)o has a positive real root p. We obtain

1+Zc,—e“"" > 1+Zci = I—Z(—q) >0
i€l il iel
and consequently

7} (1 + Zc,-e_’“’") >0.

iel
But, we obviously have
ije_""f < 0.
jed
We have thus arrived at a contradiction, which proves Part (III).
Now, for the needs of the rest of the proof, we define

= (1 + Zc,-e"‘“*) —a—) bie™™ for AeR.

i€l JjEeT
We have

F') =1-) ()7 + A3 (—c)ose™ — § =) (~bj)rie" for A€ R.

iel el jeJ
Assume that (Hz) and (Hj) hold. Assumption (Hz) means that
(3.6) F(0) > 0.
Furthermore, by assumption (H3), we obtain for A > 0
F()>1-3 (-e) = > (~bj)r; 20
i€l jeJ

and consequently F is strictly increasing on the interval (0, cc). This fact together
with (3.6) guarantee that (%) has no roots in the interval (0,00). We have thus

showed Part (IV).
In order to establish Parts (I) and (V), we obtain

F'(X) = 22{;—@)0;—&"“" -~ )\Z(—c,—)cr?e_’\‘" + Z(—_bj)_r_,,z-er—’\” for A€R

iel iel JEJ
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and so we have
(3.7 F"(A) >0 for all A € (—00,0].

To show Part (I), we consider a nonpositive real root Mg of the characteristic
equation (¥). By the definition of vy, , we have

147, = 14+ a(l—Xoos)e™ + 3 bjrjemoms
it JjeJ
= Z(_c‘-)e_lxoai_ﬂ_v):ﬂ Z(‘_Ci)q;'e_'\ua" —_ Z(_bj)q—je—/\orj
iel = £
= F'(X).

Let us assume that there exists at least one real root A; of (¥) with A\; < )¢
(respectively, 0 > A; > Ag). Since F()g) = F(A;) = 0, we can apply Rolle’s
Theorem to conclude that F'(§) = 0 for some point £ such that A\; < £ < Ag
(resp., Ao < £ < A1). Furthermore, we observe that, in view of (3.7), F” is strictly
increasing on (—oc,0]. Thus, since F’(£) = 0, it follows that F”’ is positive on (£, (]
(resp., F" is negative on (—o0,£)). So, we must have F’(Ag) > 0 (resp., F'(Xg) < 0).

Finally, we will prove Part (V). Assume that (H), (Hy) and (Hs) are satisfied.
Assumption (H;) means that (3.6) holds, while assumptions (Hy) and (Hs) mean
respectively

(3.8) a— % <0
and
(3.9) F ( - ;_1—) <0.

The last inequality guarantees, in particular, that A = a — % is not a root of the

characteristic equation (¥). Furthermore, it is not difficult to verify that
(3.10) F(—o0) = oo.

By taking into account (3.8), from (3.6), (3.7) and (3.9) we can conclude that, in
the interval (a — .0], (%) has a unique root. Moreover, in view of (3.8), from (3.7),
(3.9) and (3.10) it follows that, in the interval (—oo,a — 1), (%) has a unique root.
The proof of our lemma is now complete. '

Before closing this section and ending the paper, let us concentrate our interest
to the special case of the (non-neutral) delay differential equation (E) considered
in Section 2. Equation (E) can be obtained (as a special case) from (E) by taking
¢; = 0 for 7 € I and considering the initial segment of natural numbers I and the
delays o; for 1 € I to be chosen arbitrarily so that: o; for i € I are positive real
numbers such that a;, # 03, for i3, 42 € I with i; # 42; and 0 < 7. (For example,
it can be considered that I = J, and ¢ = 7; for i € I.) As it concerns the (non-
neutral) delay differential equation (E), we have the number T in place of r and the
initial condition (C) instead of (6’) Also, the characteristic equation (¥) reduces
to ().

By applying Theorem 3.1 to the (non-neutral) delay differential equation (E),
we are led to Theorem 2.1, under the additional hypothesis that the root Ag of the
characteristic equation (x) is nonpositive and such that 1+ Posex bjT e~ 20T £ (),
(Note that we always have 1+ 3. ; bjT;e~27i # 0 if the other root A; of (%) is
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also nonpositive.) But, this (additional) hypothesis is not needed for Theorem 2.1
to hold. This is the reason for which we have examined separately the special case
of delay differential equations.
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